

REKEFJORD STONE AS BENEFITS OF HIGH-DENSITY ROCK IN COASTAL & OFFSHORE

Rekefjord (East) Quarry, Norway Supply of Norit High-Density Rock Density > 3100 kg/m³

 $3,155 \text{ Mg/m}^3$.

2. Stone-density

The stone-density of the Norite was tested in accordance with EN 13383-2. The test was done with 10 stones.

The density of the Norite is:

Design of Rock Structures in Coastal and Offshore Structures:

Rock Density ρ_r is Key Parameter

Under Water, use (Relative) Submerged Density: $\Delta = \frac{\rho_r}{\rho_{vv}} - 1$

Strong Effect: increase Density from 2650 to 3100 kg/m³ (+17%) $\rightarrow \Delta$ increases 28%

Breakwaters, Coastal Defences

Design: all stability equations take the shape: $\frac{H_S}{\Delta \cdot D} = X$

Direct relationship Rock Size $D \leftrightarrow \Delta$. As $M \sim D^3$: strong effect on rock mass.

With rock density up 17%, median rock mass reduces with 44%.

Offshore Rock Berms, Scour Protection

Design: use Shields equation: $\Psi = \frac{\tau}{(\rho_r - \rho_w) \cdot g \cdot D}$

Through shear stress: beneficial iteration loop Reduction of median rock mass up to 75% Use much lighter rock gradings

Benefits of High-Density Rock over Normal-Density Rock

- While maintaining the same level of design safety:
 - Reduce required median rock mass by 44% to 75% (depending on situation)
 - Reduce total amount of rock by 8% to 30% (depending on situation)
- Easier execution:
 - Use lighter cranes (breakwaters, coastal defences)
 - Use fallpipe vessels (scour protection)
- Handle smaller masses, safer project execution

